gamma的分布是什么?
Gamma分布:是指在地震序列的有序性、地震发生率的齐次性、计数特征具有独立增量和平稳增量情况下,可以导出地震发生i次时间的概率密度为Gamma密度函数。α=n,Γ(n,β)就是Erlang分布。Erlang分布常用于可靠性理论和排队论中,如一个复杂系统中从第1次故障到恰好再出现n次故障所需的时间;从某一艘船到达港口直到恰好有n只船到达所需的时间都服从Erlang分布。当α= 1 , β = 1/λ 时,Γ(1,λ) 就是参数为λ的指数分布,记为exp (λ) ;当α =n/2 ,β=2时,Γ (n/2,2)就是数理统计中常用的χ2( n) 分布。学科间紧密联系的关系。在概率理论和统计学中,指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
gamma分布是什么?
gamma分布是统计学中的连续概率函数。伽玛分布是统计学的一种连续概率函数。Gamma分布中的参数α,形状参数(shape parameter),β称为尺度参数(scale parameter)。意义:假设随机变量X为等到第α件。卡方(n)~gamma(n/2,1/2)指数分布exp(k)~gamma(1,k)。伽玛分布是统计学中的一种连续概率函数,包含两个参数α和β,其中α称为形状参数,β称为尺度参数。伽马分布的特性:Gamma的可加性。两个独立随机变量X和Y,且X~Ga(a,γ),Y~Ga(b,γ),则Z = X+Y ~ Ga(a+b,γ)。注意X和Y的尺度参数必须一样。数学表达式。若随机变量X具有概率密度。其中α>0,β>0,则称随机变量X服从参数α,β的伽马分布,记作G(α,β)。
伽玛分布在哪?
伽玛分布(Gamma Distribution)是统计学的一种连续概率函数,是概率统计中一种非常重要的分布。“指数分布”和“χ2分布”都是伽马分布的特例。 Gamma分布中的参数α称为形状参数(shape parameter),β称为逆尺度参数。Gamma分布的特殊形式:当形状参数α=1时,伽马分布就是参数为γ的指数分布,X~Exp(γ)。当α=n/2,β=1/2时,伽马分布就是自由度为n的卡方分布,X^2(n)。